

Common Pneumatic Formulas

Air Valves help to regulate pressure in the cylinder and are sized for flow capacity (Cv). Cv is based on the specific cylinder stroke & travel time requirements, as well as piston size. Cv is a coefficient that measures the quantity of air a device can pass.

Cv= Area (in²) x Length (ins.) x Compression Factor Pressure Drop Factor x Time (secs) x 29

Area = Effective cylinder piston area (square inches) A = $\pi r^2 (3.14 \text{ x radius}^2)$

PLEASE NOTE: The same formulas apply for the rod end of the cylinder. However, to make precise calculations, one must take the cylinder area (in²) minus the rod end area (in²) when utilizing this valve sizing formula to determine return stroke Cv rating.

Length= The total cylinder stroke length in inches (in.)

Compression Factor= Taken from the table (based on supply pressure rating).

Pressure drop factor= 10 or 15 psi drop is a good guideline for using this formula (refer to Table 20 for further details)

Time= Required cylinder stroke time (in seconds)

Pressure Drop Factor PD for Various Pressure Drops						
Supply Pressure	Compression Factor	2	5	10	15	20
PSL	CE	PSID				
40	3.7	9.9	15.3	20.5	23.6	N/A
50	4.4	10.8	16.7	22.6	26.4	29
60	5.1	11.7	18.1	24.6	29	32
70	5.8	12.5	19.3	26.5	31.3	34.8
80	6.4	13.2	20.5	28.2	33-5	37.4
90	7.1	13.9	21.6	29.8	35.5	39.9
100	7.8	14.5	22.7	31.3	37.4	42.1
110	8.5	15.2	23.7	32.8	39.3	44.3
120	9.2	15.8	24.7	34.2	41	46.4
130	9.8	16.4	25.6	35-5	42.7	48.4
140	10.5	16.9	26.5	36.8	44.3	50.3
150	11.2	17.5	27.4	38.1	45.9	52.1

Table 20

Compression Factor= Taken from Table 20 (based on supply pressure rating).

Common Pneumatic Formulas (cont'd)

Sizing Example

- 6 inches bore cylinder with 2-inch rod thickness and 15-inch total stroke
- Travel time=2 seconds
- 100 psi supply pressure
- 15 psi pressure drop factor to be used

Calculate the 6" diameter piston bore area (in square inches) for extend calculations

A = 6 ins. x 6 ins. x .7854 = 28.27 (in²)

PLEASE NOTE: This is for the cylinder extend area. To calculate the cylinder return area, the rod area must be calculated (in²) and then this value must be subtracted from the piston bore area (in²).

Calculate the 2" diameter rod end area in square inches A=2 ins. x 2 ins. x .7854 = 3.1416 (in²) Thus, Cylinder Return Area is 28.27 in² - 3.1416 in² = 25.12 in²

Apply these application variables to the Cv sizing formula:

 $\mathbf{Cv} = \frac{28.27 \text{ in}^2 \text{ x } 15 \text{ ins. x } 7.8}{37.4 \text{ x } 2 \text{ secs. x } 29} = \frac{3,307}{2169} = 1.52 \text{ Cv (to extend)}$

 $\mathbf{Cv} = \frac{25.12 \text{ in}^2 \text{ x } 15 \text{ in } \text{ x } 7.8}{37.4 \text{ x } 2 \text{ secs } \text{ x } 29} = \frac{2939}{2169} = 1.52 \text{ Cv (to extend)}$

Select a valve that meets this 1.52 Cv rating

Air Flow Rates

SCFM - Standard Cubic Feet per Minute – One cubic foot of gas (air) per minute at conditions of: 14.69 Pounds per Square Inch (psi)
68 degrees F
Relative humidity of 36%

Cubic Feet Per Minute (CFM): A particular unit of measurement for airflow volume. It's determined by how many cubic feet of air passes by a stationary point per minute.

Free Air Flow: How much flow is actually generated (in standard condition).